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4.8 Butterworth Filter

The Butterworth filter is a type of signal-processing filter ]
N
designed to have a frequency response that is as flat as N\
possible in the passband as shown in Fig. (4.12). It is also r N
referred to as a maximally flat magnitude filter. It was first \Y\Q \{\
. . - : - N
described in 1930 by the British engineer and physicist \>; -
Stephen Butterworth. A Butterworth filter is a filter with 7
Fig. 3.

an amplitude response of:-
Fig 4.12 The frequency response

. 1 plot from Butterworth's 1930 paper.
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We will design a normalized filter (taking w, =
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1rad/sec), and then scale filter to the desired cutoff
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frequency, so evaluating (w,. = 1 rad/sec) thiswill lead
Eq. (20) to be:-
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|Hn () Vi1+w2n (21) Fig 4.13 The frequency response

plot of several Butterworth filter.
Note that

. . . 1

|Hy(j)|? = Hy(jo)Hp(—jw) = ... (22)

So, to find the transfer function of the mentioned filter we applied the below points:-

1- The transfer function of the filter is denoted as H,,(s) .

2- Recall thats = 0 + jw.

3- The frequency response H, (jw) can be obtained from H,,(s) by evaluating s = jw , ie
w=-s/].

4- Applying the aforementioned points in Eq. (22), we will get

|Hy (i) |2 = Hy (jw)Hy (—jw) = Hy(s)Hp(=5) = ——

1+(s/H*"

... (23)

_r
1+(s/H*"

(s/H*™=-1 .. (29)

Since H,(s)H,(—s) = , H,,(s)H,,(—s) has 2n poles, and they occur when:-



Isolating s yields

s* = —(jH) ... (25)
Since —1 = /2K~ for integer k, and —j = /™2, Eq. (25) will be
g2n — o/m(2k-1+n) (26)

Taking 1/2n root of the each side of Eq. (20) yields

jm

s = et — g (% Qk—-1+ n)) +jsin(% 2k — 1+ n)) .. (27)

Fork =1,2,.....,2n.
From Eq. (27), it is clear that the poles will be located in a unit circle with the origin center as
shown in Fig. 4.14.

A .
H,(s)H,(—s) Imaginary
Poles for n=7

From Fig. 4.14, the left n poles are corresponded to H,,(s),

while the right n poles are corresponded to H,,(—s) .

If we wish the filter H,,(s) to be stable, the poles of

Real
N

A

H,(s)are selected to be those in the left half plane and

H,,(s) can be written in the following form:

1
H, (s) =
) = oG =) =5 |
1
~n n—1 =2 1 .. Fig 4.14 Poles distribution of
ST Gn-sS tan2S toet1 seventh order Butterworth Filter.
1
- Bn(s) e (28)

Where B,,(s) is nth order Butterworth Polynomial.

According to the above H,,(s) can be computed by Hand or by evaluating the value of B,,(s) in
Table 4.1.



Table 4.1 Factors of Butterworth polynomials of order 1 through 10.

n Factors of Butterworth Polynomials B, (s)
(s+1)
(8® +1.414214s + 1)
(s +1)(s*+s+1)
(s* + 0.765367s + 1)(s” + 1.847759s + 1)
(s +1)(s* + 0.618034s + 1)(s* + 1.618034s + 1)
(s +0.517638s + 1)(s” + 1.414214s + 1)(s* + 1.931852s + 1)
(s +1)(s% +0.445042s + 1)(s* + 1.246980s + 1)(s* + 1.801938s + 1)
(s* + 0.390181s + 1)(s® + 1.111140s + 1)(s* + 1.662939s + 1)(s* + 1.961571s + 1)
9 (s +1)(s* + 0.347296s + 1)(s* + s + 1)(s* + 1.532089s + 1)(s* + 1.879385s + 1)
10 | (s +0.312869s + 1)(s” + 0.907981s + 1)(s* + 1.414214s + 1)(s* + 1.782013s + 1)(s* + 1.975377s + 1)
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4.8.1 Analog to analog transformations:

In the following discussion, a normalized low-pass filter will be used as a prototype filter for
illustration. For normalization purposes we selected w,. = 1 rad/sec . For the other values of

w, , ascaling will be performed to H,,(s) in Table 4.1 by replacing s with s/w...
H'(s) = I'I(S)ls—)s/wC = H(s/w.) .. (29)

For the other types of filters, we apply Table 4.2 scaling.

Table 4.2 Normalizing Butterworth Filters .

Filter Type Prototype response Transformed filter response
Low-pass filter Normalized Low-pass G(S) H(s) = G(5)|sos/w,
High-pass filter Normalized Low-pass G(S) H(s) = G(S)|sow,/s
Band-pass filter Normalized Low-pass G(S) H(s) = G(S)lsﬁ:(zv:ﬁ%
Band-stop filter Normalized Low-pass G(s) H(s) = G(S)lsf;,(zvf‘iw




4.8.2 Design of Low Pass Butterworth Filters

The filter requirements are normally given in terms of a set of critical frequency, say w,, w,s and

gains G, Gs. A common set of conditions for the low-pass response is given in Fig. 4.15.

The dB Gain for any w, is

1

Gy = 20logy0|Hy(jeo,)| = 2010gs = 0720= ~10logw <1 !

1+ (Z’)—’C‘)zn

So, gains at frequencies w,, ws are

Gpas = —10log; (1 + (%)Z") —> (:—'Z)Z" 105 -1
Gsap = —101logyg (1 + (Z—)Zn) ‘ (Z—j)zn _ 105" — 1

Dividing Eqg. (32) to Eq. (31), yields

wx>2n
wC

.. (30)

. (31)

.. (32)

2n _Gsap
10 —
<&> _10 P -1 .. (33)
wp _’pdB
10 10 —1
By solving Eqg. (30), gets
_Gsap
1 10 10 —1
0810 “Gpan
n = 10 10 -1 . (34)
2 loglo(ws/wp)
Solving Eqg. (31 & 32), yields
1 Fig 4.15 Butterworth low pass filter
Gp.as 2n ... (39) P
W, = wp/ (10-?{—0 _ 1) specifications.
1
_Gsap 2n
w, = wg/ (10 10 — 1) .. (36)




Example 4.4:- Design a low-pass Butterworth filter with below specifications:-

Gpag = —3dB,Gsqp = —25dB,w, = 20 rad/sec & ws =50 rad/ sec

uk=20£1
— u)c=24.36
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Fig 4.15 For Example 4.4,



