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4.8  Butterworth Filter  

The Butterworth filter is a type of signal-processing filter 

designed to have a frequency response that is as flat as 

possible in the passband as shown in Fig. (4.12). It is also 

referred to as a maximally flat magnitude filter. It was first 

described in 1930 by the British engineer and physicist 

Stephen Butterworth. A Butterworth filter is a filter with 

an amplitude response of:-  

|𝐻𝑛(𝑗𝜔)| =
1

√𝟏+(
𝝎

𝝎𝒄
)
𝟐𝒏

                        …. (20)  

Where 𝝎𝒄 is the cutoff frequency and 𝒏 is the filter order. 

We will design a normalized filter (taking 𝝎𝒄 =

1 𝑟𝑎𝑑/𝑠𝑒𝑐), and then scale filter to the desired cutoff 

frequency, so evaluating (𝝎𝒄 = 1 𝑟𝑎𝑑/𝑠𝑒𝑐 )  this will lead 

Eq. (20) to be:- 

|𝐻𝑛(𝑗𝜔)| =
1

√𝟏+𝝎𝟐𝒏
                        …. (21)  

Note that 

|𝐻𝑛(𝑗𝜔)|
2 = 𝐻𝑛(𝑗𝜔)𝐻𝑛(−𝑗𝜔) =

1

𝟏+𝝎𝟐𝒏
                 …. (22)  

So, to find the transfer function of the mentioned filter we applied the below points:- 

1- The transfer function of the filter is denoted as  𝑯𝒏(𝒔) . 

2- Recall that 𝒔 = 𝜎 + 𝑗𝜔. 

3- The frequency response 𝐻𝑛(𝑗𝜔) can be obtained from 𝑯𝒏(𝒔) by evaluating 𝒔 = 𝑗𝜔 , ie 

𝜔 = 𝑠/𝑗. 
4- Applying the aforementioned points in Eq. (22), we will get 

|𝐻𝑛(𝑗𝜔)|
2 = 𝐻𝑛(𝑗𝜔)𝐻𝑛(−𝑗𝜔) = 𝐻𝑛(𝑠)𝐻𝑛(−𝑠) =

1

𝟏+(𝒔/𝒋)𝟐𝒏
                          …. (23) 

Since  𝐻𝑛(𝑠)𝐻𝑛(−𝑠) =
1

𝟏+(𝒔/𝒋)𝟐𝒏
 ,  𝐻𝑛(𝑠)𝐻𝑛(−𝑠) has 𝟐𝒏 poles, and they occur when:- 

(𝒔/𝒋)𝟐𝒏 = −𝟏               … (24) 

Fig 4.12 The frequency response 

plot from Butterworth's 1930 paper. 

 

Fig 4.13 The frequency response 

plot of several Butterworth filter. 

 



Isolating 𝒔 yields  

𝒔𝟐𝒏 = −(𝒋)𝟐𝒏               … (25) 

Since −𝟏 = 𝒆𝒋𝝅(𝟐𝒌−𝟏) for integer 𝒌, and −𝒋 = 𝒆𝒋𝝅/𝟐, Eq. (25) will be  

𝒔𝟐𝒏 = 𝒆𝒋𝝅(𝟐𝒌−𝟏+𝒏)              … (26) 

Taking 𝟏/𝟐𝒏 root of the each side of Eq. (20) yields 

𝒔 = 𝒆
𝒋𝝅

𝟐𝒏
(𝟐𝒌−𝟏+𝒏) = 𝐜𝐨𝐬 (

𝝅

𝟐𝒏
(𝟐𝒌 − 𝟏 + 𝒏)) + 𝒋 𝐬𝐢𝐧(

𝝅

𝟐𝒏
(𝟐𝒌 − 𝟏 + 𝒏))                               … (27) 

For 𝒌 = 1,2,… . . , 2𝑛.  

From Eq. (27), it is clear that the poles will be located in a unit circle with the origin center as 

shown in Fig. 4.14. 

From Fig. 4.14, the left 𝑛 poles are corresponded to 𝑯𝒏(𝒔), 

while the right 𝑛 poles are corresponded to 𝑯𝒏(−𝒔) . 

If we wish the filter 𝑯𝒏(𝒔) to be stable, the poles of 

𝑯𝒏(𝒔)are selected to be those in the left half plane and 

𝑯𝒏(𝒔) can be written in the following form: 

𝑯𝒏(𝒔) =
1

(𝑠 − 𝑠1)(𝑠 − 𝑠2)… (𝑠 − 𝑠𝑛)

=
1

𝑠𝑛 + 𝑎𝑛−1𝑠
𝑛−1 + 𝑎𝑛−2𝑠

𝑛−2 +⋯+ 1

=
1

𝑩𝒏(𝒔)
 

Where 𝑩𝒏(𝒔) is 𝑛𝑡ℎ order Butterworth Polynomial. 

According to the above 𝑯𝒏(𝒔) can be computed by Hand or by evaluating the value of 𝑩𝒏(𝒔) in 

Table 4.1.  

 

 

 

Real  

Imaginary  𝑯𝒏(𝒔)𝑯𝒏(−𝒔) 

Poles for n=7 

Fig 4.14 Poles distribution of 

seventh order Butterworth Filter. 

 

… (28) 



 

4.8.1 Analog to analog transformations: 

In the following discussion, a normalized low-pass filter will be used as a prototype filter for 

illustration. For normalization purposes we selected 𝝎𝒄 = 1 𝑟𝑎𝑑/𝑠𝑒𝑐 . For the other values of  

𝝎𝒄 , a scaling will be performed to 𝑯𝒏(𝒔) in Table 4.1 by replacing  𝒔 with 𝒔/𝝎𝒄.  

𝑯’(𝒔)  =  𝑯(𝒔)|𝒔 𝒔/𝒘𝒄  =  𝑯(𝒔/𝒘𝒄)           … (29) 

For the other types of filters, we apply  Table 4.2 scaling. 

 

 

Filter Type Prototype response Transformed filter response 

Low-pass filter Normalized Low-pass G(s) 𝐻(𝑠) = 𝐺(𝑠)|𝑠→𝑠/𝑤𝑐  

High-pass filter Normalized Low-pass G(s) 𝐻(𝑠) = 𝐺(𝑠)|𝑠→𝑤𝑐/𝑠 

Band-pass filter Normalized Low-pass G(s) 
𝐻(𝑠) = 𝐺(𝑠)|

𝑠→
𝑠2+𝑤𝑙𝑤𝑢
𝑠(𝑤𝑢−𝑤𝑙)

 

Band-stop filter Normalized Low-pass G(s) 𝐻(𝑠) = 𝐺(𝑠)|
𝑠→
𝑠(𝑤𝑢−𝑤𝑙)
𝑠2+𝑤𝑙𝑤𝑢

 

 

Table 4.1 Factors of Butterworth polynomials of order 1 through 10. 

Table 4.2 Normalizing Butterworth Filters . 



4.8.2 Design of Low Pass Butterworth Filters 

The filter requirements are normally given in terms of a set of critical frequency, say 𝜔𝑝, 𝜔𝑠 and 

gains 𝐺𝑝, 𝐺𝑠. A common set of conditions for the low-pass response is given in Fig. 4.15. 

The dB Gain for any 𝜔𝑥 is 

𝐺𝑥 = 20 log10|𝐻𝑛(𝑗𝜔𝑥)| = 20 log10

(

 
1

√𝟏 + (
𝝎𝒙
𝝎𝒄
)
𝟐𝒏

)

 = 0 − 20 = −10 log10 (𝟏 + (
𝝎𝒙
𝝎𝒄
)
𝟐𝒏

) 

So, gains at frequencies 𝜔𝑝, 𝜔𝑠 are  

𝐺𝑝,𝑑𝐵 = −10 log10 (𝟏 + (
𝝎𝒑

𝝎𝒄
)
𝟐𝒏

)       (
𝝎𝒑

𝝎𝒄
)
𝟐𝒏
= 𝟏𝟎−

𝑮𝒑,𝒅𝑩

𝟏𝟎 − 𝟏   

𝐺𝑠,𝑑𝐵 = −10 log10 (𝟏 + (
𝝎𝒔

𝝎𝒄
)
𝟐𝒏

)       (
𝝎𝒔

𝝎𝒄
)
𝟐𝒏
= 𝟏𝟎−

𝑮𝒔,𝒅𝑩
𝟏𝟎 − 𝟏 

Dividing Eq. (32) to Eq. (31), yields 

(
𝝎𝒔
𝝎𝒑
)

𝟐𝒏

=
𝟏𝟎−

𝑮𝒔,𝒅𝑩
𝟏𝟎 − 𝟏  

𝟏𝟎−
𝑮𝒑,𝒅𝑩
𝟏𝟎 − 𝟏

 

By solving Eq. (30), gets  

𝒏 =

𝐥𝐨𝐠𝟏𝟎 [
𝟏𝟎−

𝑮𝒔,𝒅𝑩
𝟏𝟎 − 𝟏  

𝟏𝟎−
𝑮𝒑,𝒅𝑩
𝟏𝟎 − 𝟏

]  

𝟐 𝐥𝐨𝐠𝟏𝟎(𝝎𝒔/𝝎𝒑)
 

 Solving Eq. (31 & 32), yields  

𝝎𝒄 = 𝝎𝒑/(𝟏𝟎
−
𝑮𝒑,𝒅𝑩
𝟏𝟎 − 𝟏)

𝟏
𝟐𝒏

 

𝝎𝒄 = 𝝎𝒔/ (𝟏𝟎
−
𝑮𝒔,𝒅𝑩
𝟏𝟎 − 𝟏)

𝟏
𝟐𝒏

 

… (30) 

… (31) 

… (32) 

… (33) 

… (34) 

… (35) 

… (36) 

Fig 4.15 Butterworth low pass filter 

specifications. 

 



Example 4.4:- Design a low-pass Butterworth filter with below specifications:- 

𝑮𝒑,𝒅𝑩 = −3 𝑑𝐵, 𝑮𝒔,𝒅𝑩 = −𝟐𝟓 𝒅𝑩,𝝎𝒑 = 20  𝑟𝑎𝑑/ sec   & 𝝎𝒔 = 50  𝑟𝑎𝑑/ 𝑠𝑒𝑐   

 

Fig 4.15 For Example 4.4. 

 


