Basrah University College of Engineering Electrical Engineering Department

Introduction to Electrical Networks

Asst. Lect: Hamzah Abdulkareem

Chapter Four

The Filters

<u>Part 3</u>

- Butterworth Filter
- Analog to analog transformations
- Design of Low Pass Butterworth Filters

4.8 Butterworth Filter

The Butterworth filter is a type of signal-processing filter designed to have a frequency response that is as flat as possible in the passband as shown in Fig. (4.12). It is also referred to as a maximally flat magnitude filter. It was first described in 1930 by the British engineer and physicist **Stephen Butterworth**. A Butterworth filter is a filter with an amplitude response of:-

$$|H_n(j\omega)| = \frac{1}{\sqrt{1 + \left(\frac{\omega}{\omega_c}\right)^{2n}}} \qquad \dots (20)$$

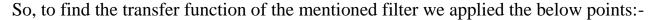
Where ω_c is the cutoff frequency and *n* is the filter order.

We will design a normalized filter (taking $\omega_c = 1 \, rad/sec$), and then scale filter to the desired cutoff frequency, so evaluating ($\omega_c = 1 \, rad/sec$) this will lead Eq. (20) to be:-

$$|H_n(j\omega)| = \frac{1}{\sqrt{1+\omega^{2n}}} \qquad \dots (21)$$

Note that

$$|H_n(j\omega)|^2 = H_n(j\omega)H_n(-j\omega) = \frac{1}{1+\omega^{2n}} \qquad \dots (22)$$



- 1- The transfer function of the filter is denoted as $H_n(s)$.
- 2- Recall that $s = \sigma + j\omega$.
- 3- The frequency response $H_n(j\omega)$ can be obtained from $H_n(s)$ by evaluating $s = j\omega$, ie $\omega = s/j$.
- 4- Applying the aforementioned points in Eq. (22), we will get

$$|H_n(j\omega)|^2 = H_n(j\omega)H_n(-j\omega) = H_n(s)H_n(-s) = \frac{1}{1 + (s/j)^{2n}}$$
(23)

Since $H_n(s)H_n(-s) = \frac{1}{1+(s/j)^{2n}}$, $H_n(s)H_n(-s)$ has **2n** poles, and they occur when:- $(s/j)^{2n} = -1$... (24)

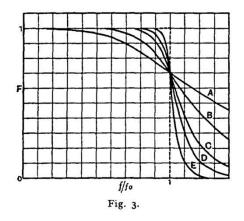


Fig 4.12 The frequency response plot from Butterworth's 1930 paper.

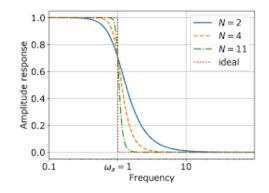


Fig 4.13 The frequency response plot of several Butterworth filter.

Isolating *s* yields

$$s^{2n} = -(j)^{2n}$$
 ... (25)
Since $-1 = e^{j\pi(2k-1)}$ for integer k , and $-j = e^{j\pi/2}$, Eq. (25) will be
 $s^{2n} = e^{j\pi(2k-1+n)}$... (26)

Taking 1/2n root of the each side of Eq. (20) yields

$$s = e^{\frac{j\pi}{2n}(2k-1+n)} = \cos\left(\frac{\pi}{2n}(2k-1+n)\right) + j\sin(\frac{\pi}{2n}(2k-1+n)) \qquad \dots (27)$$

For k = 1, 2, ..., 2n.

From Eq. (27), it is clear that the poles will be located in a unit circle with the origin center as shown in Fig. 4.14.

From Fig. 4.14, the left *n* poles are corresponded to $H_n(s)$, while the right *n* poles are corresponded to $H_n(-s)$.

If we wish the filter $H_n(s)$ to be stable, the poles of $H_n(s)$ are selected to be those in the left half plane and $H_n(s)$ can be written in the following form:

$$H_{n}(s) = \frac{1}{(s - s_{1})(s - s_{2}) \dots (s - s_{n})}$$
$$= \frac{1}{s^{n} + a_{n-1}s^{n-1} + a_{n-2}s^{n-2} + \dots + 1}$$
$$= \frac{1}{B_{n}(s)} \dots (28)$$

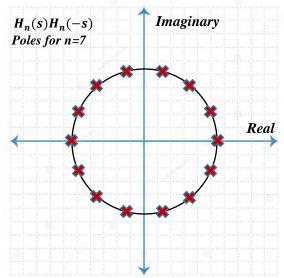


Fig 4.14 Poles distribution of seventh order Butterworth Filter.

Where $B_n(s)$ is *nth* order Butterworth Polynomial.

According to the above $H_n(s)$ can be computed by Hand or by evaluating the value of $B_n(s)$ in Table 4.1.

n	Factors of Butterworth Polynomials $B_n(s)$		
1	(s+1)		
2	$(s^2+1.414214s+1)$		
3	$(s+1)(s^2+s+1)$		
4	$(s^2+0.765367s+1)(s^2+1.847759s+1)\\$		
5	$(s+1)(s^2+0.618034s+1)(s^2+1.618034s+1)$		
6	$(s^2+0.517638s+1)(s^2+1.414214s+1)(s^2+1.931852s+1)$		
7	$(s+1)(s^2+0.445042s+1)(s^2+1.246980s+1)(s^2+1.801938s+1)$		
8	$(s^2+0.390181s+1)(s^2+1.111140s+1)(s^2+1.662939s+1)(s^2+1.961571s+1)\\$		
9	$(s+1)(s^2+0.347296s+1)(s^2+s+1)(s^2+1.532089s+1)(s^2+1.879385s+1)$		
10	$(s^2 + 0.312869s + 1)(s^2 + 0.907981s + 1)(s^2 + 1.414214s + 1)(s^2 + 1.782013s + 1)(s^2 + 1.975377s + 1)$		

Table 4.1 Factors of Butterworth polynomials of order 1 through 10.

4.8.1 Analog to analog transformations:

In the following discussion, a normalized low-pass filter will be used as a prototype filter for illustration. For normalization purposes we selected $\omega_c = 1 \ rad/sec$. For the other values of ω_c , a scaling will be performed to $H_n(s)$ in Table 4.1 by replacing s with s/ω_c .

$$H'(s) = H(s)|_{s \to s/w_c} = H(s/w_c)$$
 ... (29)

For the other types of filters, we apply Table 4.2 scaling.

Filter Type	Prototype response	Transformed filter response
Low-pass filter	Normalized Low-pass G(s)	$H(s) = G(s) _{s \to s/w_c}$
High-pass filter	Normalized Low-pass G(s)	$H(s) = G(s) _{s \to w_c/s}$
Band-pass filter	Normalized Low-pass G(s)	$H(s) = G(s) _{s \to \frac{s^2 + w_l w_u}{s(w_u - w_l)}}$
Band-stop filter	Normalized Low-pass G(s)	$H(s) = G(s) _{s \to \frac{S(w_u - w_l)}{s^2 + w_l w_u}}$

 Table 4.2 Normalizing Butterworth Filters .

4.8.2 Design of Low Pass Butterworth Filters

The filter requirements are normally given in terms of a set of critical frequency, say ω_p , ω_s and gains G_p , G_s . A common set of conditions for the low-pass response is given in Fig. 4.15.

The dB Gain for any ω_x is

$$G_{x} = 20 \log_{10} |H_{n}(j\omega_{x})| = 20 \log_{10} \left(\frac{1}{\sqrt{1 + \left(\frac{\omega_{x}}{\omega_{c}}\right)^{2n}}} \right) = 0 - 20 = -10 \log_{10} \left(1 + \left(\frac{\omega_{x}}{\omega_{c}}\right)^{2n} \right)$$
... (30)

So, gains at frequencies ω_p , ω_s are

Dividing Eq. (32) to Eq. (31), yields

$$\left(\frac{\omega_s}{\omega_p}\right)^{2n} = \frac{10^{-\frac{G_{s,dB}}{10}} - 1}{10^{-\frac{G_{p,dB}}{10}} - 1} \qquad \dots (33)$$

By solving Eq. (30), gets

$$n = \frac{\log_{10} \left[\frac{10^{-\frac{G_{s,dB}}{10}} - 1}{10^{-\frac{G_{p,dB}}{10}} - 1} \right]}{2 \log_{10} (\omega_s / \omega_p)} \qquad \dots (34)$$

Solving Eq. (31 & 32), yields
$$\omega_c = \omega_p / \left(10^{-\frac{G_{p,dB}}{10}} - 1 \right)^{\frac{1}{2n}} \qquad \dots (35)$$
$$\omega_c = \omega_s / \left(10^{-\frac{G_{s,dB}}{10}} - 1 \right)^{\frac{1}{2n}} \qquad \dots (36)$$

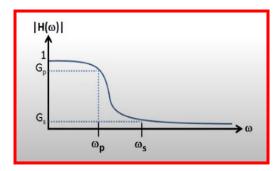


Fig 4.15 Butterworth low pass filter specifications.

Example 4.4:- Design a low-pass Butterworth filter with below specifications:-

 $G_{p,dB} = -3 \ dB, G_{s,dB} = -25 \ dB, \omega_p = 20 \ rad/sec$ & $\omega_s = 50 \ rad/sec$

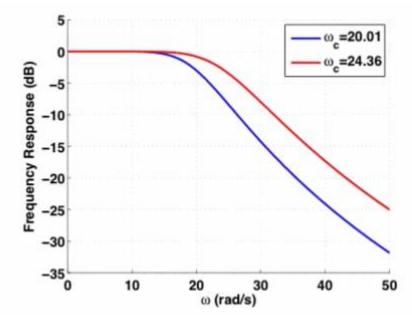


Fig 4.15 For Example 4.4.